Kuesa Music Box QML Example
#pragma once
#include <cassert>
#include <type_traits>
#include <cerrno>
#include <cstdint>
#include <ctime>
#if defined(__INTEL_COMPILER)
#define AE_ICC
#elif defined(_MSC_VER)
#define AE_VCPP
#elif defined(__GNUC__)
#define AE_GCC
#endif
#if defined(_M_IA64) || defined(__ia64__)
#define AE_ARCH_IA64
#elif defined(_WIN64) || defined(__amd64__) || defined(_M_X64) || defined(__x86_64__)
#define AE_ARCH_X64
#elif defined(_M_IX86) || defined(__i386__)
#define AE_ARCH_X86
#elif defined(_M_PPC) || defined(__powerpc__)
#define AE_ARCH_PPC
#else
#define AE_ARCH_UNKNOWN
#endif
#define AE_UNUSED(x) ((void)x)
#if defined(__has_feature)
#if __has_feature(thread_sanitizer)
#define AE_NO_TSAN __attribute__((no_sanitize("thread")))
#else
#define AE_NO_TSAN
#endif
#else
#define AE_NO_TSAN
#endif
#if defined(AE_VCPP) || defined(AE_ICC)
#define AE_FORCEINLINE __forceinline
#elif defined(AE_GCC)
#define AE_FORCEINLINE inline
#else
#define AE_FORCEINLINE inline
#endif
#if defined(AE_VCPP) || defined(AE_ICC)
#define AE_ALIGN(x) __declspec(align(x))
#elif defined(AE_GCC)
#define AE_ALIGN(x) __attribute__((aligned(x)))
#else
#define AE_ALIGN(x) __attribute__((aligned(x)))
#endif
namespace moodycamel {
enum memory_order {
memory_order_relaxed,
memory_order_acquire,
memory_order_release,
memory_order_acq_rel,
memory_order_seq_cst,
memory_order_sync = memory_order_seq_cst
};
}
#if (defined(AE_VCPP) && (_MSC_VER < 1700 || defined(__cplusplus_cli))) || (defined(AE_ICC) && __INTEL_COMPILER < 1600)
#include <intrin.h>
#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86)
#define AeFullSync _mm_mfence
#define AeLiteSync _mm_mfence
#elif defined(AE_ARCH_IA64)
#define AeFullSync __mf
#define AeLiteSync __mf
#elif defined(AE_ARCH_PPC)
#include <ppcintrinsics.h>
#define AeFullSync __sync
#define AeLiteSync __lwsync
#endif
#ifdef AE_VCPP
#pragma warning(push)
#pragma warning(disable: 4365) // Disable erroneous 'conversion from long to unsigned int, signed/unsigned mismatch' error when using `assert`
#ifdef __cplusplus_cli
#pragma managed(push, off)
#endif
#endif
namespace moodycamel {
AE_FORCEINLINE void compiler_fence(memory_order order) AE_NO_TSAN
{
switch (order) {
case memory_order_relaxed: break;
case memory_order_acquire: _ReadBarrier(); break;
case memory_order_release: _WriteBarrier(); break;
case memory_order_acq_rel: _ReadWriteBarrier(); break;
case memory_order_seq_cst: _ReadWriteBarrier(); break;
default: assert(false);
}
}
#if defined(AE_ARCH_X86) || defined(AE_ARCH_X64)
AE_FORCEINLINE void fence(memory_order order) AE_NO_TSAN
{
switch (order) {
case memory_order_relaxed: break;
case memory_order_acquire: _ReadBarrier(); break;
case memory_order_release: _WriteBarrier(); break;
case memory_order_acq_rel: _ReadWriteBarrier(); break;
case memory_order_seq_cst:
_ReadWriteBarrier();
AeFullSync();
_ReadWriteBarrier();
break;
default: assert(false);
}
}
#else
AE_FORCEINLINE void fence(memory_order order) AE_NO_TSAN
{
switch (order) {
case memory_order_relaxed:
break;
case memory_order_acquire:
_ReadBarrier();
AeLiteSync();
_ReadBarrier();
break;
case memory_order_release:
_WriteBarrier();
AeLiteSync();
_WriteBarrier();
break;
case memory_order_acq_rel:
_ReadWriteBarrier();
AeLiteSync();
_ReadWriteBarrier();
break;
case memory_order_seq_cst:
_ReadWriteBarrier();
AeFullSync();
_ReadWriteBarrier();
break;
default: assert(false);
}
}
#endif
}
#else
#include <atomic>
namespace moodycamel {
AE_FORCEINLINE void compiler_fence(memory_order order) AE_NO_TSAN
{
switch (order) {
case memory_order_relaxed: break;
case memory_order_acquire: std::atomic_signal_fence(std::memory_order_acquire); break;
case memory_order_release: std::atomic_signal_fence(std::memory_order_release); break;
case memory_order_acq_rel: std::atomic_signal_fence(std::memory_order_acq_rel); break;
case memory_order_seq_cst: std::atomic_signal_fence(std::memory_order_seq_cst); break;
default: assert(false);
}
}
AE_FORCEINLINE void fence(memory_order order) AE_NO_TSAN
{
switch (order) {
case memory_order_relaxed: break;
case memory_order_acquire: std::atomic_thread_fence(std::memory_order_acquire); break;
case memory_order_release: std::atomic_thread_fence(std::memory_order_release); break;
case memory_order_acq_rel: std::atomic_thread_fence(std::memory_order_acq_rel); break;
case memory_order_seq_cst: std::atomic_thread_fence(std::memory_order_seq_cst); break;
default: assert(false);
}
}
}
#endif
#if !defined(AE_VCPP) || (_MSC_VER >= 1700 && !defined(__cplusplus_cli))
#define AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
#endif
#ifdef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
#include <atomic>
#endif
#include <utility>
namespace moodycamel {
template<typename T>
class weak_atomic
{
public:
AE_NO_TSAN weak_atomic() { }
#ifdef AE_VCPP
#pragma warning(push)
#pragma warning(disable: 4100) // Get rid of (erroneous) 'unreferenced formal parameter' warning
#endif
template<typename U> AE_NO_TSAN weak_atomic(U&& x) : value(std::forward<U>(x)) { }
#ifdef __cplusplus_cli
AE_NO_TSAN weak_atomic(nullptr_t) : value(nullptr) { }
#endif
AE_NO_TSAN weak_atomic(weak_atomic const& other) : value(other.load()) { }
AE_NO_TSAN weak_atomic(weak_atomic&& other) : value(std::move(other.load())) { }
#ifdef AE_VCPP
#pragma warning(pop)
#endif
AE_FORCEINLINE operator T() const AE_NO_TSAN { return load(); }
#ifndef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
template<typename U> AE_FORCEINLINE weak_atomic const& operator=(U&& x) AE_NO_TSAN { value = std::forward<U>(x); return *this; }
AE_FORCEINLINE weak_atomic const& operator=(weak_atomic const& other) AE_NO_TSAN { value = other.value; return *this; }
AE_FORCEINLINE T load() const AE_NO_TSAN { return value; }
AE_FORCEINLINE T fetch_add_acquire(T increment) AE_NO_TSAN
{
#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86)
if (sizeof(T) == 4) return _InterlockedExchangeAdd((long volatile*)&value, (long)increment);
#if defined(_M_AMD64)
else if (sizeof(T) == 8) return _InterlockedExchangeAdd64((long long volatile*)&value, (long long)increment);
#endif
#else
#error Unsupported platform
#endif
assert(false && "T must be either a 32 or 64 bit type");
return value;
}
AE_FORCEINLINE T fetch_add_release(T increment) AE_NO_TSAN
{
#if defined(AE_ARCH_X64) || defined(AE_ARCH_X86)
if (sizeof(T) == 4) return _InterlockedExchangeAdd((long volatile*)&value, (long)increment);
#if defined(_M_AMD64)
else if (sizeof(T) == 8) return _InterlockedExchangeAdd64((long long volatile*)&value, (long long)increment);
#endif
#else
#error Unsupported platform
#endif
assert(false && "T must be either a 32 or 64 bit type");
return value;
}
#else
template<typename U>
AE_FORCEINLINE weak_atomic const& operator=(U&& x) AE_NO_TSAN
{
value.store(std::forward<U>(x), std::memory_order_relaxed);
return *this;
}
AE_FORCEINLINE weak_atomic const& operator=(weak_atomic const& other) AE_NO_TSAN
{
value.store(other.value.load(std::memory_order_relaxed), std::memory_order_relaxed);
return *this;
}
AE_FORCEINLINE T load() const AE_NO_TSAN { return value.load(std::memory_order_relaxed); }
AE_FORCEINLINE T fetch_add_acquire(T increment) AE_NO_TSAN
{
return value.fetch_add(increment, std::memory_order_acquire);
}
AE_FORCEINLINE T fetch_add_release(T increment) AE_NO_TSAN
{
return value.fetch_add(increment, std::memory_order_release);
}
#endif
private:
#ifndef AE_USE_STD_ATOMIC_FOR_WEAK_ATOMIC
volatile T value;
#else
std::atomic<T> value;
#endif
};
}
#if defined(_WIN32)
extern "C" {
struct _SECURITY_ATTRIBUTES;
__declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES* lpSemaphoreAttributes, long lInitialCount, long lMaximumCount, const wchar_t* lpName);
__declspec(dllimport) int __stdcall CloseHandle(void* hObject);
__declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void* hHandle, unsigned long dwMilliseconds);
__declspec(dllimport) int __stdcall ReleaseSemaphore(void* hSemaphore, long lReleaseCount, long* lpPreviousCount);
}
#elif defined(__MACH__)
#include <mach/mach.h>
#elif defined(__unix__)
#include <semaphore.h>
#endif
namespace moodycamel
{
namespace spsc_sema
{
#if defined(_WIN32)
class Semaphore
{
private:
void* m_hSema;
Semaphore(const Semaphore& other);
Semaphore& operator=(const Semaphore& other);
public:
AE_NO_TSAN Semaphore(int initialCount = 0)
{
assert(initialCount >= 0);
const long maxLong = 0x7fffffff;
m_hSema = CreateSemaphoreW(nullptr, initialCount, maxLong, nullptr);
}
AE_NO_TSAN ~Semaphore()
{
CloseHandle(m_hSema);
}
void wait() AE_NO_TSAN
{
const unsigned long infinite = 0xffffffff;
WaitForSingleObject(m_hSema, infinite);
}
bool try_wait() AE_NO_TSAN
{
const unsigned long RC_WAIT_TIMEOUT = 0x00000102;
return WaitForSingleObject(m_hSema, 0) != RC_WAIT_TIMEOUT;
}
bool timed_wait(std::uint64_t usecs) AE_NO_TSAN
{
const unsigned long RC_WAIT_TIMEOUT = 0x00000102;
return WaitForSingleObject(m_hSema, (unsigned long)(usecs / 1000)) != RC_WAIT_TIMEOUT;
}
void signal(int count = 1) AE_NO_TSAN
{
ReleaseSemaphore(m_hSema, count, nullptr);
}
};
#elif defined(__MACH__)
class Semaphore
{
private:
semaphore_t m_sema;
Semaphore(const Semaphore& other);
Semaphore& operator=(const Semaphore& other);
public:
AE_NO_TSAN Semaphore(int initialCount = 0)
{
assert(initialCount >= 0);
semaphore_create(mach_task_self(), &m_sema, SYNC_POLICY_FIFO, initialCount);
}
AE_NO_TSAN ~Semaphore()
{
semaphore_destroy(mach_task_self(), m_sema);
}
void wait() AE_NO_TSAN
{
semaphore_wait(m_sema);
}
bool try_wait() AE_NO_TSAN
{
return timed_wait(0);
}
bool timed_wait(std::int64_t timeout_usecs) AE_NO_TSAN
{
mach_timespec_t ts;
ts.tv_sec = static_cast<unsigned int>(timeout_usecs / 1000000);
ts.tv_nsec = (timeout_usecs % 1000000) * 1000;
kern_return_t rc = semaphore_timedwait(m_sema, ts);
return rc != KERN_OPERATION_TIMED_OUT && rc != KERN_ABORTED;
}
void signal() AE_NO_TSAN
{
semaphore_signal(m_sema);
}
void signal(int count) AE_NO_TSAN
{
while (count-- > 0)
{
semaphore_signal(m_sema);
}
}
};
#elif defined(__unix__)
class Semaphore
{
private:
sem_t m_sema;
Semaphore(const Semaphore& other);
Semaphore& operator=(const Semaphore& other);
public:
AE_NO_TSAN Semaphore(int initialCount = 0)
{
assert(initialCount >= 0);
sem_init(&m_sema, 0, initialCount);
}
AE_NO_TSAN ~Semaphore()
{
sem_destroy(&m_sema);
}
void wait() AE_NO_TSAN
{
int rc;
do
{
rc = sem_wait(&m_sema);
}
while (rc == -1 && errno == EINTR);
}
bool try_wait() AE_NO_TSAN
{
int rc;
do {
rc = sem_trywait(&m_sema);
} while (rc == -1 && errno == EINTR);
return !(rc == -1 && errno == EAGAIN);
}
bool timed_wait(std::uint64_t usecs) AE_NO_TSAN
{
struct timespec ts;
const int usecs_in_1_sec = 1000000;
const int nsecs_in_1_sec = 1000000000;
clock_gettime(CLOCK_REALTIME, &ts);
ts.tv_sec += usecs / usecs_in_1_sec;
ts.tv_nsec += (usecs % usecs_in_1_sec) * 1000;
if (ts.tv_nsec >= nsecs_in_1_sec) {
ts.tv_nsec -= nsecs_in_1_sec;
++ts.tv_sec;
}
int rc;
do {
rc = sem_timedwait(&m_sema, &ts);
} while (rc == -1 && errno == EINTR);
return !(rc == -1 && errno == ETIMEDOUT);
}
void signal() AE_NO_TSAN
{
sem_post(&m_sema);
}
void signal(int count) AE_NO_TSAN
{
while (count-- > 0)
{
sem_post(&m_sema);
}
}
};
#else
#error Unsupported platform! (No semaphore wrapper available)
#endif
class LightweightSemaphore
{
public:
typedef std::make_signed<std::size_t>::type ssize_t;
private:
weak_atomic<ssize_t> m_count;
Semaphore m_sema;
bool waitWithPartialSpinning(std::int64_t timeout_usecs = -1) AE_NO_TSAN
{
ssize_t oldCount;
int spin = 10000;
while (--spin >= 0)
{
if (m_count.load() > 0)
{
m_count.fetch_add_acquire(-1);
return true;
}
compiler_fence(memory_order_acquire);
}
oldCount = m_count.fetch_add_acquire(-1);
if (oldCount > 0)
return true;
if (timeout_usecs < 0)
{
m_sema.wait();
return true;
}
if (m_sema.timed_wait(timeout_usecs))
return true;
while (true)
{
oldCount = m_count.fetch_add_release(1);
if (oldCount < 0)
return false;
oldCount = m_count.fetch_add_acquire(-1);
if (oldCount > 0 && m_sema.try_wait())
return true;
}
}
public:
AE_NO_TSAN LightweightSemaphore(ssize_t initialCount = 0) : m_count(initialCount)
{
assert(initialCount >= 0);
}
bool tryWait() AE_NO_TSAN
{
if (m_count.load() > 0)
{
m_count.fetch_add_acquire(-1);
return true;
}
return false;
}
void wait() AE_NO_TSAN
{
if (!tryWait())
waitWithPartialSpinning();
}
bool wait(std::int64_t timeout_usecs) AE_NO_TSAN
{
return tryWait() || waitWithPartialSpinning(timeout_usecs);
}
void signal(ssize_t count = 1) AE_NO_TSAN
{
assert(count >= 0);
ssize_t oldCount = m_count.fetch_add_release(count);
assert(oldCount >= -1);
if (oldCount < 0)
{
m_sema.signal(1);
}
}
ssize_t availableApprox() const AE_NO_TSAN
{
ssize_t count = m_count.load();
return count > 0 ? count : 0;
}
};
}
}
#if defined(AE_VCPP) && (_MSC_VER < 1700 || defined(__cplusplus_cli))
#pragma warning(pop)
#ifdef __cplusplus_cli
#pragma managed(pop)
#endif
#endif