

The contents of this manual and the associated KD Reports software are the property of Klarälvdalens
Datakonsult AB and are copyrighted. Any reproduction in whole or in part is strictly prohibited without prior
written permission by Klarälvdalens Datakonsult AB.

KD Reports and the KD Reports logo are trademarks or registered trademarks of Klarälvdalens Datakonsult
AB in the European Union, the United States, and/or other countries. Other product and company names and
logos may be trademarks or registered trademarks of their respective companies.

Table of Contents
1. Introduction ...

What is KD Reports .. 1
Installation .. 1
Feature Summary ... 1
What's New in KDReports? .. 2
The Structure of this Manual .. 2

2. Programmers Manual ..
Generating a Report: Hello World ... 4
A Letter from KDAB .. 4
Tables with Formatting and a Page-break: PriceList 6
Using SQL Data in Reports: A Database Example 7

3. XML Templates ...
Hello World as XML .. 9
The PriceList Example as XML .. 9

4. References ...
A Brief Look at the API .. 11
The KD Reports XML Template Format ... 11
Examples .. 20
API Documentation .. 21

5. Version History ..
Version 1.2 ... 22

6. Appendix ..
Obtaining KD Reports .. 24
Support .. 24
How to Contact KDAB ... 24
License .. 24

iii

List of Figures
4.1. Pricelist example and its elements explained .. 20

iv

Chapter 1. Introduction

What is KD Reports

KD Reports is a fully featured Qt tool that allows users to create printable reports for a
variety of applications.

Users can generate reports by two methods. They can use KD Reports to generate code,
with its easy-to-use C++ API, or they can produce reports from structured sources like
XML or SQL databases. KD Reports formats data into useful styles complete with wa-
termarks, headers and footers. Once generated, reports can be previewed, printed, or
saved as PDF or HTML files. For those using KDAB's KD Chart, KD Reports easily in-
coporates graphics generated with KD Chart into their final documents.

KD Reports is intended for C++ programmers who use Qt in their applications. This ref-
erence assumes an understanding of the C++ programming language and a working
knowledge of Qt.

Installation

Licensed customers may install KD Reports from a binary package, with a graphic user
interface, or directly from the source code. Experienced developers may choose the lat-
ter option, as it allows programmers to integrate the KD Reports source code directly in-
to their own builds.

Feature Summary

KD Reports reports are simple C++ objects integrated into your project's application
source code. KD Reports provides programmers with tools to implement “reporting
modules” inside their own applications.

KD Reports uses XML templates. Programmers use the templates to design the look and
structure of the reports and to create “placeholders” for report content. This is helpful
when integrating data from non-technical staff. At runtime, the application fills in the
placeholders with user supplied data and generates the report.

Reports can contain tables generated from Qt's abstract item models. With the QtSql
module, applications retrieve report table data from SQL databases. Because reports are
generated within application logic, programmers can apply higher-level calculations
within the same programming environment as in the rest of the application.

Charts can be added to reports with KDAB's KD Chart package. KD Chart provides de-
velopers with a wealth of contrasting chart types (as well as great performance, since it
is also written in C++). Charts are regular report elements, and can be formatted the
same way as any other element.

1

Any image format supported by Qt can be added to reports. Images can be added as ele-
ments of the report or as watermarks.

Headers and footers that repeat on every page can be filled with any type of elements,
such as text and images.

For structuring the reports, groups of elements can be arranged horizontally or vertic-
ally. Page breaks are performed automatically. Printing on endless paper is supported.

What's New in KDReports?

New Features in Version 1.3

• Spreadsheet mode, for faster, more powerful printing with large tables. A table can
now be broken across multiple pages horizontally or vertically. Tables can be forced
to fit into N*M pages, using a smaller font if necessary. (See Re-
port::setReportMode for the difference between the two modes.)

• New XML tag <hline/> to simplify the use of horizontal lines in XML.

• Support for custom color, configurable thickness and margin.

• XmlElementHandler has a new virtual method, hLineElement, called upon when
parsing an hline. Note: this new virtual is only enabled if KDReports is compiled
with the define KDREPORTS_ALLOW_BINARY_INCOMPATIBILITY.

• New XML tag <ifdef id="..."> to skip sections of the XML template when a text
value is empty. Note: this is only evaluated at loading time. Changing the text value
later on will not have an effect on “skipping sections.”

• Support for configuring the charts: new constructor ChartEle-
ment(KDChart::Chart*) for charts created in code, and
setChart(KDChart::Chart*) for setting the chart from the XmlElementHandler.

• Improved charts rendering and printing by drawing charts at full resolution (without
the use of an intermediate pixmap).

• New method setDefaultFont for all table elements.

• Mail merge support (see examples/MailMergeXML).

The Structure of this Manual

This manual contains the following main parts:

2

• Introduction - you are reading this section.

• Programmer's Manual - for first time users.

• Programmer's Reference - a complete reference for KD Reports functionality.

• Appendix - contains sample reports and licensing information

3

Chapter 2. Programmers Manual
This Chapter introduces the KD Reports API. In the following examples, we will use
KD Reports to illustrate how the API works. Let's start with a simple "Hello World" ap-
plication.

Generating a Report: Hello World

This first example shows how to generate a basic report.

...

int main(int argc, char** argv) {
QApplication app(argc, argv);

// Create a report
KDReports::Report report;

// Add a text element for the title
KDReports::TextElement titleElement(QObject::tr("Hello World!"));
titleElement.setPointSize(18);
report.addElement(titleElement, Qt::AlignHCenter);

// add 20 mm of vertical space:
report.addVerticalSpacing(20);

// add some more text
KDReports::TextElement textElement(
QObject::tr("This is a report generated with KD Reports"));
report.addElement(textElement, Qt::AlignLeft);

// show a print preview
KDReports::PreviewDialog preview(&report);
return preview.exec();

}

A “report” is a set of output pages. The first line of code creates an object of the class
KDReports::Report. Next, we give the report a title element containing the classic text:
“Hello World!” Line four creates a second text element, left aligned, containing the text
“This is a report generated with KD Reports.” KD Reports allows formatting functions.
The third line of code creates a vertical space of 20mm between the two text elements.
This is all you need to create a basic report. It can now be printed, saved to a PDF,
saved as an HTML file, or displayed in a preview window. In this particular example,
the last two lines of code generate a preview dialog displaying our report.

In the next section, we'll generate a slightly more complex report—a letter.

A Letter from KDAB

In the following example, we will show you how to generate a fully featured letter with
KD Reports. We will format headers and footers, align multiple bodies of text, create in-
dented textual elements, include a table generated from an Qt Model/View Framework
model, and place a picture.

...

4

// Create a report
KDReports::Report report;

// create a table:
QStandardItemModel model;
model.setHorizontalHeaderItem(0, new QStandardItem(QObject::tr("Product")));
...
model.setItem(0, 0, new QStandardItem(QObject::tr("KD Reports 1.0")));
...

First, the report object and a QStandardItemModel are initialized. QStandardItemModel
implements QAbstractItemModel: the class that KD Reports uses to fill a table.

...
// Add From: and To: information:
KDReports::TextElement fromElement;
fromElement << "From:\n"

<< "Klarälvdalens Datakonsult AB\n"
<< "Hagfors\n"
<< "Sweden\n";

report.addElement(fromElement);
report.addVerticalSpacing(10);
KDReports::TextElement toElement;
toElement << "To:\n"

<< "All Qt Users Out There In The World\n";
report.addElement(toElement);
report.addVerticalSpacing(10);

// Add a text element for the title
KDReports::TextElement titleElement(QObject::tr(

"Ever wanted to create a printed report from within your Qt application?\n"
"Look no further!"));

titleElement.setPointSize(14);
report.addElement(titleElement, Qt::AlignCenter);
...

Next, the “From:” and “To:” text elements are added. Line breaks can be added to text
elements, as needed. Text can also be streamed into the text element object. The “title
element” is a text element as well, but it gets a slightly larger font and is added to the re-
port with a centered alignment.

...

// Add another text element, demonstrating "<<" operator
KDReports::TextElement bodyElement;
bodyElement.setPointSize(10);
bodyElement << QObject::tr("Dear KDAB Customers,\n");
bodyElement <<
"we are happy to introduce the newest member of KDAB's line of industry "
"leading software products: KD Reports. KD Reports is the Qt tool to "
"easily create printable reports. It provides all necessary features for "
"a variety of applications:\n"
"Reports can be created programmatically, using an easy to use C++ API, "
"or can be data-driven, creating reports from XML or SQL data sources "
"complete with watermarks, headers and footers. Reports can be previewed "
"manually, sent directly to a printer, or saved as PDF files. "
"Additionally, using KDAB's KD Chart package together with KD Reports allows "
"reports to be garnished with the myriad of chart types supported by KD Chart."
report.addElement(bodyElement, Qt::AlignJustify);

// release date table:
KDReports::AutoTableElement tableElement(&model);
tableElement.setBorder(1);
report.addElement(tableElement, Qt::AlignCenter);
report.addVerticalSpacing(6);

KDReports::TextElement body2Element;
body2Element.setPointSize(14);
body2Element <<

5

"Reporting is a rather general feature, and it seems many were looking for a nice
"package providing this kind of functionality to complement Qt."
"We at KDAB hope to make the life of our customers more enjoyable with it. "
"Let us know if we were successful!\n";
report.addElement(body2Element, Qt::AlignJustify);
report.addVerticalSpacing(30);
KDReports::TextElement signatureElement;
signatureElement << QObject::tr("Cheers,\n") << QObject::tr(
"Klarälvdalens Datakonsult AB, Platform-independent software solutions");

report.addElement(signatureElement);

...

Next, the body of the letter is added. It consists of two blocks of text. Both are added
with justified alignment. Between the two paragraphs, we add a table that shows the
KD Reports release dates. Adding a table is as simple as instantiating a table object and
plugging the data model into it. Finally, the signature is added (it wouldn't be a letter
without it.) Of course, the footer should contain contact info. Let's add that:

...

// add footer with contact information:
KDReports::HtmlElement rulerElement;
rulerElement << "<hr />";
report.footer().addElement(rulerElement);
KDReports::TextElement footerText;
footerText << "www.kdab.com | email: info@kdab.com | +46-563-540090";
footerText.setPointSize(8);
report.footer().addElement(footerText, Qt::AlignCenter);

...

The footer shows our first usage of KDReports::HtmlElement. HtmlElement contains
text in HTML markup. Here, we use it to create a horizontal ruler. The following lines
include our contact information; a little smaller this time, and centered. This completes
the basic structure of our letter.

In the following example, we will demonstrate how to include different types of tables
in our reports.

Tables with Formatting and a Page-break: PriceList

Tables are a common element in reports. This price list example shows how tables can
be generated from code, from model data, or loaded from CSV files (using a helper
class provided with KD Reports).

...
TableModel table1;
table1.setDataHasVerticalHeaders(false);
table1.loadFromCSV(":/table1");
KDReports::AutoTableElement autoTableElement1(&table1);
autoTableElement1.setWidth(100, KDReports::Percent);
report.addElement(autoTableElement1);
...

This section fills the table1 object with data loaded from the CSV formatted resource
“:/table1”. TableModel implements QAbstractItemModel, so the KDRe-

6

ports::AutoTableElement can use it directly. The table is set to a width of 100%. This
matches nicely with justified text paragraphs located above or below the table.

...
KDReports::TableElement tableElement;
tableElement.setHeaderRowCount(2);
tableElement.setPadding(3);
QColor headerColor("#DADADA");
// Merged header in row 0
KDReports::Cell& topHeader = tableElement.cell(0, 0);
topHeader.setColumnSpan(2);
topHeader.setBackground(headerColor);
topHeader.addElement(KDReports::TextElement("TableElement example"),

Qt::AlignHCenter);

// Normal header in row 1
KDReports::Cell& headerCell1 = tableElement.cell(1, 0);
headerCell1.setBackground(headerColor);
QPixmap systemPixmap(":/system.png");
headerCell1.addElement(KDReports::ImageElement(systemPixmap));
headerCell1.addInlineElement(KDReports::TextElement(" Item"));
KDReports::Cell& headerCell2 = tableElement.cell(1, 1);
headerCell2.setBackground(headerColor);
KDReports::TextElement expected("Expected");
expected.setItalic(true);
expected.setBackground(QColor("#999999"));
headerCell2.addElement(expected);
headerCell2.addInlineElement(KDReports::TextElement(" shipping time"));

// Data in rows 2 and 3
tableElement.cell(2, 0).addElement(
KDReports::TextElement("Network Peripherals"));

tableElement.cell(2, 1).addElement(
KDReports::TextElement("4 days"));

tableElement.cell(3, 0).addElement(
KDReports::TextElement("Printer Cartridges"));

tableElement.cell(3, 1).addElement(
KDReports::TextElement("3 days"));

report.addElement(tableElement);
...

Here, a table is created directly from KDReports::Cell objects. When using this tech-
nique, it is not necessary to provide a data model. It also allows you to add more de-
tailed formatting information for each individual cell. You can also add other elements,
like pictures, to each cell. Model driven tables provide such information by returning it
from QAbstractItemModel::data(..).

Using SQL Data in Reports: A Database Example

Of course, reports are not static and often present information retrieved from other data
sources. SQL databases are probably the most common of these. All databases suppor-
ted by Qt's QtSql module, including Oracle, MySQL, and many others, can be used in
reports. This example shows how to use the content of a sample in-memory SQLite
database.

...
// open a DB connection to an in-memory database
QSqlDatabase db = QSqlDatabase::addDatabase("QSQLITE");
db.setDatabaseName(":memory:");
if(!db.open()) {
QMessageBox::critical(0, QObject::tr("Cannot open database"),
QObject::tr("Cannot create connection to the requested database. "

7

"Your Qt is probably lacking the QSQLITE driver. "
"Please check your Qt installation."), QMessageBox::Cancel);

return false;
}

// fill the DB with some test data
QSqlQuery query;
query.exec("create table airlines (id int primary key, "

"name varchar(20), homecountry varchar(2))");
query.exec("insert into airlines values(1, 'Lufthansa', 'DE')");
query.exec("insert into airlines values(2, 'SAS', 'SE')");
query.exec("insert into airlines values(3, 'United', 'US')");
query.exec("insert into airlines values(4, 'KLM', 'NL')");
query.exec("insert into airlines values(5, 'Aeroflot', 'RU')");
...

This piece of code creates the in-memory sqlite database. It will be used to initialize a
QSqlTableModel. Then, the model will be used to form a table in the report.

...
// Create a QSqlTableModel, connect to the previously created database, fill
// the db with some data.
QSqlTableModel tableModel(0, db);
tableModel.setTable("airlines");
tableModel.select();
tableModel.removeColumn(0);
tableModel.setHeaderData(0, Qt::Horizontal, QObject::tr("ID"));
tableModel.setHeaderData(1, Qt::Horizontal, QObject::tr("Name"));
tableModel.setHeaderData(2, Qt::Horizontal, QObject::tr("Home country"));
report.addElement(KDReports::AutoTableElement(&tableModel));
...

After the model object is created and connected to the database, a KDRe-
ports::AutoTableElement creates a table from the query results. Column 0 is removed,
so that the record ids are not shown.

8

Chapter 3. XML Templates
XML report templates generally offer shorter turnaround time for modifications than
C++ source code. They are easier for non-programmers to understand and to edit, as
well.

Hello World as XML

The details of the XML syntax are described in the reference section of this manual.
Here, we will discuss only the details of loading the report from an XML file:

...
int main(int argc, char** argv) {
QApplication app(argc, argv);

// Create a report
KDReports::Report report;

QFile reportFile("HelloWorld.xml");
if(!reportFile.open(QIODevice::ReadOnly)) {
QMessageBox::warning(0, QObject::tr("Warning"), QObject::tr(

"Could not open report description file 'HelloWorld.xml'. "
"Please start this program from the HelloWorldXML directory."));

return -1;
}

if(!report.loadFromXML(&reportFile)) {
QMessageBox::warning(0, QObject::tr("Warning"),

QObject::tr("Could not parse report description file."));
reportFile.close();
return -2;

}

// show a print preview:
KDReports::PreviewDialog preview(&report);
return preview.exec();

}
...

This is the complete main() function of the HelloWorldXML example. A report object
is generated, and the file HelloWorld.xml is loaded into the report. Done! In later ex-
amples, we will show how to bind model data to structures in the XML syntax and add
other elements like images.

The PriceList Example as XML

To use model data and other resources in reports generated from XML templates, the
XML elements and the data sources need to be associated with each other. To achieve
this, XML element ids are mapped to text elements or data sources.

...

// Create a report
KDReports::Report report;

// Set the content of a text field - this shows how xml files can be
// used as templates for reports, not only as complete (generated) reports.
report.associateTextValue("title_element", "Price list example");

9

report.associateTextValue("company_address", "Klarälvdalens Datakonsult AB\n"
"Rysktorp\n"
"SE-68392 Hagfors\n"
"Sweden");

// Note: id="table1_title" is used twice in the xml, both places get the right value
report.associateTextValue("table1_title", "Network Peripherals");
report.associateTextValue("table2_title", "Printer Cartridges");

report.associateImageValue("image_system", QPixmap(":/system.png"));

...

In this example, "title_element" is the id of a text element in the XML sources. The con-
tent of the XML element will be replaced with the given value.

...

// Create two table models which will be used by one table element each.
TableModel table1;
table1.setDataHasVerticalHeaders(false);
table1.loadFromCSV(":/table1");
report.associateModel(QLatin1String("table1"), &table1);
TableModel table2;
table2.setDataHasVerticalHeaders(false);
table2.loadFromCSV(":/table2");
report.associateModel(QLatin1String("table2"), &table2);

...

Here, the data model is associated with a table tag (element) in the XML source. The re-
spective XML snippet looks like this:

...
<table model="table1" width="100%"/>
...

The examples show that after associating the XML elements with programatically cre-
ated report elements and data sources, the report XML template can now be modified in
style and content independently of the program source code.

10

Chapter 4. References

A Brief Look at the API

KD Reports offers classes for embedding content such as images, text, HTML and
charts, as well as ways for arranging them. Use the KDReports::AutoTableElement for
the Model-View approach, or just arrange your elements in a KDReports::TableElement
with cells and a header. Content that will allow printing, watermarks, exports and layout
can be added to an instance of the report class. Use the preview dialog class to give
users an on-screen version of the report.

The KD Reports XML Template Format

Introduction

XML report templates are a means to separate the layout of a report from its data ac-
quisition and processing logic. Templates are quicker to modify and test than C++ code
as well. While a working knowledge of XML is required to use them, they still should
be much easier for non-programmers to understand than C++.

Element Reference

Common Attributes in Detail

Here we describe in detail some attributes that are common to many elements. These de-
scriptions are too long to repeat for every element, so you'll only find a short description
in the element documentations. We recommend reading this section before reading any
element descriptions.

Common Attributes

color Set the foreground color. The #RRGGBB
format known from HTML where each let-
ter represents a hex digit for a color com-
ponent is valid, but also the coarser #RGB
and the finer #RRRGGGBBB and
#RRRRGGGGBBBB formats. Addition-
ally SVG named colors as defined by the
World Wide Web Consortium (W3C) such
as “royalblue”, “chartreuse” or
“transparent” can be used.

background Set the background color; the format is the

11

Common Attributes

same as color.

bgred, bggreen, bgblue Set the RGB color components of the
background separately. You must use
either none or all three of them. Each com-
ponent has a value range of 0-255 and val-
ues must be given in decimal.

width, height Values can be given either in millimeters
like 'width="100"' (note not
'width="100mm"') or in percentage of the
page width/height like 'width="50%"'.

inline If the inline attribute is present in an ele-
ment, it is inserted into the current flow of
text or other layout items. If it is not
present, the element is put into an area of
its own.

<report>

The top-level element of a KD Reports XML template. It is used to set up the page lay-
out and to set some defaults for the report.

Attributes

font Set the default font face for the document.

pointsize Set the default font size for the document
in typographic points.

header-body-spacing Set the spacing between header and body
in millimeters.

footer-body-spacing Set the spacing between footer and body in
millimeters.

margin-top Set the page's top margin in millimeters.

margin-top Set the page's top margin in millimeters.

margin-left Set the page's left margin in millimeters.

margin-bottom Set the page's bottom margin in milli-
meters.

margin-right Set the page's right margin in millimeters.

<text>

A section of text.

12

Attributes

id This is used to refer to the text in code and
replace it with a programmatically ob-
tained value. If no such replacement takes
place, the element contents will be used.

background Set the background color.

bgred, bggreen, bgblue Set the RGB color components of the
background separately. You cannot set one
or two components only; all three must be
present.

font Set the font face.

pointsize Set the font size in typographic points.

color Set the text color.

bold Make the text bold.

italic Make the text italic.

strikeout Strike out the text using an horizontal line.

underline Underline the text.

inline Add as inline element.

alignment Set the horizontal alignment; possible val-
ues are "left", "right" and "hcenter". This is
only applicable if the inline attribute is not
present.

paragraph-background Set the background of the whole paragraph
rectangle. Possible values are like color or
background. This is only applicable if the
inline attribute is not present.

model The model key for the model that supplies
the data - see the API documentation of
KDReport::associateModel(). If you are
not a programmer, we recommend that you
pick a unique and descriptive name for the
data source to be used. If no model is asso-
ciated with this key, the element contents
will be used as fallback.

row To be used together with the model attrib-
ute. Sets the row in the model from which
to extract the text.

column To be used together with the model attrib-
ute. Sets the column in the model from
which to extract the text.

13

<html>

A section of HTML-formatted rich text.

Attributes

id This is used to replace the HTML code
with a programmatically generated value.
If no such replacement takes place, the ele-
ment contents will be used.

background Set the background color.

bgred, bggreen, bgblue Set the RGB color components of the
background separately. You cannot set one
or two components only; all three must be
present.

inline Add as inline element.

alignment Set the horizontal alignment; possible val-
ues are "left", "right" and "hcenter". This is
only applicable if the inline attribute is not
present.

model The model key for the model that supplies
the data - see the API documentation of
KDReport::associateModel(). If you are
not a programmer, we recommend that you
pick a unique and descriptive name for the
data source to be used. If no model is asso-
ciated with this key, the element contents
will be used as fallback.

row To be used together with the model attrib-
ute. Sets the row in the model from which
to extract the text.

column To be used together with the model attrib-
ute. Sets the column in the model from
which to extract the text.

<hline />

Insert a horizontal line. This element has no content.

Attributes

color The color of the line. This attribute is op-
tional, the default color is gray.

thickness The thickness of the line, in pixels. This at-
tribute is optional, the default thickness is

14

Attributes

2 pixels.

margin The empty space (in mm) above and below
the line that slightly separates it from the
surrounding text. This attribute is optional,
the default value is 6mm above and below
the line.

<vspace />

Insert a vertical blank space. This element has no content.

Attributes

size The vertical blank size in millimeters. This
attribute is mandatory.

<page-break />

Insert a page break. This element has no attributes and no content.

<image />

Insert an image into the report. This element has no content.

Attributes

file A path to an image file.

id This is used to replace the image with a
programmatically obtained image. If no
such replacement takes place, the image
from the file attribute will be used.

width Set the width in millimeters or percentages
of the page width. Mutually exclusive with
height and fitToPage.

height Set the height in millimeters or percent-
ages of the page height. Mutually exclus-
ive with width and fitToPage.

fitToPage Make the image fit one page. Mutually ex-
clusive with width and height.

inline Add as inline element.

alignment Set the horizontal alignment; possible val-
ues are "left", "right" and "hcenter". This is

15

Attributes

only applicable if the inline attribute is not
present.

<header>

Define a page header for one or several pages. A header is a content area in its own right
and may contain almost any other element.

Attributes

location Specify which pages the header should be
used on. Possible values are "first", "last",
"odd", "even", "all"; a comma-separated
list of values is allowed as well.

font Set the default font face of the header.

pointsize Set the default point size of the header
font.

<footer>

Define a page footer for one or several pages. A footer is a content area in its own right
and may contain almost any other element.

Attributes

location Specify which pages the footer should be
used on. Possible values are "first", "last",
"odd", "even", "all"; a comma-separated
list of values is allowed as well.

font Set the default font face of the footer.

pointsize Set the default point size of the footer font.

<variable>

Variables can be used in headers and footers to insert data from a small list of pre-
defined choices, e.g. page number or current date. The type attribute is mandatory and
specifies which data to insert. The <variable> element has no content.

Attributes

type
Possible values:

16

Attributes

• pagenumber - insert the current page
number

• pagecount - insert the page count of the
report

• textdate - insert the current date as in
the example. Names will be abbrevi-
ated and localized; the order of ele-
ments, however, will not be localized.
Example: "Thu Aug 18 2005"

• isodate - insert the current date accord-
ing to ISO 8601. Example:
"2005-08-18"

• localedate - insert the current date
formatted according to the locale in use

• texttime - insert the current time-
of-day like in the example. Example:
"13:42:59"

• isotime - insert the current time-of-day
according to ISO 8601. Example:
"13:42:59" (same as texttime)

• localetime - insert the current time-
of-day according to the locale in use

<table>

A table.

Attributes

background Set the background color.

bgred, bggreen, bgblue Set the RGB color components of the
background separately. You cannot set one
or two components only; all three must be
present.

border Set the table to show borders.

width Set the width of the table in millimeters or
percentages of the page width.

inline Add the table as an inline element.

17

Attributes

alignment Set the horizontal alignment; possible val-
ues are "left", "right" and "hcenter". This is
only applicable if the inline attribute is not
present.

model The model key for the model that supplies
the data - see the API documentation of
KDReport::associateModel(). If you are
not a programmer, we recommend that you
pick a unique and descriptive name for the
data source to be used.

The following attributes are only available if the model attribute is set.

Attributes for Model Mode

header-background Set the header background color. This
takes the same values as the common color
attribute.

verticalHeaderVisible Set to "false" to hide the header row.

horizontalHeaderVisible Set to "false" to hide the header column.

The following attributes are only available if the model attribute is not set. Data should
then be provided using <cell> elements inside the table element.

Attributes for Non-Model Mode

headerRowCount Set the number of header rows, default is
zero ###.

cellpadding Set the padding of cells in millimeters. The
default is 0.5mm.

<cell>

A table cell; it is a content area in its own right and may contain almost any other ele-
ment. It may only occur inside a table element.

Attributes

row The row number of the cell (mandatory).

column The column number of the cell
(mandatory).

rowspan The number of rows the cell should span.

colspan The number of columns the cell should

18

Attributes

span.

background Set the background color.

bgred, bggreen, bgblue Set the RGB color components of the
background separately. You cannot set one
or two components only; all three must be
present.

<chart>

A chart generated by KDAB's KD Chart; KD Chart is required for this element to work.

Attributes

model Mandatory attribute. The model key for
the model that supplies the data - see the
API documentation of KDRe-
port::associateModel(). If you are not a
programmer, we recommend that you pick
a unique and descriptive name for the data
source to be used.

background Set the background color.

bgred, bggreen, bgblue Set the RGB color components of the
background separately. You cannot set one
or two components only; all three must be
present.

width Set the width in millimeters or percentages
of the page width.

height Set the height in millimeters or percent-
ages of the page height.

inline Add as inline element

alignment Set the horizontal alignment; possible val-
ues are "left", "right" and "hcenter". This is
only applicable if the inline attribute is not
present.

Advanced Usage

XML templates are very static by nature. In some cases, however, you might see the
need for determining at runtime whether an element should be shown or hidden, for
modifying an element's attributes based on some condition, or for dynamically inserting
additional elements. All this can be done by installing an "XML element handler" on the
report. See the KDReports::XmlElementHandler API documentation for more details.

19

Examples

You will find some other examples besides Hello World shipped with your KD Reports,
from which you can learn how to show items with a table model that have been fetched
from a database in the Database example, read from a CSV file in the PriceList example
or simply created by the program, as shown in the Letters example. The PriceList and
the Database examples are also available as XML, so you can explore how easy it is to
create reports using XML.

Figure 4.1. Pricelist example and its elements explained

20

API Documentation

A complete overview of all classes and methods is available in the KD Reports API
Documentation.

21

Chapter 5. Version History

Version 1.2

• A ReportViewer application, where you can open XML reports for previewing.
This can be particularly useful while writing the XML file. ReportViewer lets you
edit text values and reports to make the preview more realistic.

• Export to HTML.

• XmlElementHandler interface for making dynamic changes to the report while
loading an XML template.

• Support for text and html elements whose text comes from a model.

Example:

<text model="table1" row="1" column="0"/>

<html model="table1" row="1" column="1"/>

• Support for merged cells in auto tables: specify the row/column span in the model's
span() method.

• Support for configurable column widths in tables; see AbstractTableEle-
ment::setColumnWidths. This also leads to faster table breaking.

• Improved error handling when parsing XML files. KDRe-
ports::Report::loadFromXML now takes an optional ErrorDetails pointer,
which will be filled with the error message from the parser.

• Support for changing named values with associateTextValue, even after the re-
port has been constructed.

• Support for definition tab positions (most useful for aligning numbers along their
decimal point).

• Support for showing the icon after the text in auto-table cells and headers:

return Qt::AlignRight for the role KDRe-
ports::AutoTableElement::DecorationAlignmentRole.

Also, a space is inserted between the icon and the text, in table cells.

• Support for creating a KDReports::Report and its elements from a non-GUI
thread (requires Qt >= 4.4). Charts and pixmaps cannot be used there.

22

• Shortcuts for changing pages in the preview dialog: Ctrl+PageUp /
Ctrl+PageDown

• Support for being compiled as a framework, on the mac.

Performance:

• Printing and previewing is much faster than in previous KDReports releases (8 times
faster for a 27-pages document- this improvement being even bigger for longer doc-
uments).

• Calling pageCount() multiple times during report creation no longer slows down
the report creation (for instance, when building a table of contents in a table model).

Bugfixes:

• <text id="...">fallback</text> and <html id="...">fallback</html> will now
show “fallback” if the id is not known, as this behavior was in the documentation
already.

• <text> </text> (whitespace-only text nodes) are now processed correctly.

• Table breaking: fixed scaleTo(1, N) so that it scales the font down until
everything fits as expected.

• Default font: the font set in the <report> element or with Re-
port::setDefaultFont wasn't applied to auto tables nor to headers and footers.

• Auto tables: the background color from the model now fills the entire cell.

• Auto tables: support models with incremental data loading (fetchMore()), like
QSqlTableModel.

• Preview dialog: hide “Paper Size” and “Orientation” labels when setPageS-
izeChangeAllowed(false) is called.

• Preserve page breaks after autotables when calling regenerateAutoTables().

23

Chapter 6. Appendix

Obtaining KD Reports

KD Reports is sold by KDAB under the terms of the KDAB Commercial License. For
pricing and sales inquiries, please visit the KDAB website at www.kdab.com. On a
case-by-case basis, KDAB may give licenses to Free Software projects, under the terms
of the GPL.

Support

Commercial license holders are entitled to support by contacting support@kdab.com.
The KDAB support staff will provide bug reporters with the tracking numbers of their
support requests and will inform them when solutions to their reported problems are
available.

How to Contact KDAB

Please contact KDAB via e-mail to info@kdab.com. Other options are:

• Phone: +46-563-540090

• Fax: +46-563-10625

• Our postal address is:

Klarävdalens Datakonsult AB
Box 30
SE-683 21 Hagfors
Sweden

License

KD Reports COMMERCIAL LICENSE AGREEMENT
FOR COMMERCIAL VERSIONS
Version 1.0

Copyright of this license text (C) 2001 Trolltech AS and (C) 2002-2009
Klarälvdalens Datakonsult AB. All rights reserved. License text used
with kind permission of Trolltech AS. The software and accompanying
material is Copyright (C) 2009 Klarälvdalens Datakonsult AB.

This non-exclusive non-transferable License Agreement ("Agreement") is
between you ("Licensee") and Klarälvdalens Datakonsult AB (KDAB), and
pertains to the Klarälvdalens Datakonsult AB software product(s)
accompanying this Agreement, which include(s) computer software and
may include "online" or electronic documentation, associated media,

24

and printed materials, including the source code, example programs and
the documentation ("Software").

COPYRIGHT AND RESTRICTIONS

1. All intellectual property rights in the Software are owned by KDAB
and are protected by Swedish copyright laws, other applicable
copyright laws, and international treaty provisions. KDAB retains all
rights not expressly granted. No title, property rights or copyright
in the Software or in any modifications to the Software shall pass to
the Licensee under any circumstances. The Software is licensed, not
sold.

2. By installing, copying, or otherwise using the Software, you agree
to be bound by the terms of this agreement. If you do not agree to the
terms of this Agreement, do not install, copy, or otherwise use the
Software.

3. Upon your acceptance of the terms and conditions of this Agreement,
KDAB grants you the right to use the Software in the manner provided
below.

4. KDAB grants to you as an individual a personal, nonexclusive,
non-transferable license to make and use copies of the Software for
the sole purposes of designing, developing, testing and distributing
your software product(s) ("Applications"). You may install copies of
the Software on an unlimited number of computers provided that you are
the only individual using the Software. If you are an entity, KDAB
grants you the right to designate one, and only one, individual within
your organization who shall have the sole right to use the Software in
the manner provided above.

5. The license granted in this Agreement for you to create and
distribute your own Applications is subject to all of the following
conditions: (i) all copies of the Applications you create must bear a
valid copyright notice, either your own or the copyright notice that
appears on the Software; (ii) you may not remove or alter any
copyright, trademark or other proprietary rights notice contained in
any portion of the Software; (iii) you will indemnify and hold KDAB, its
related companies and its suppliers, harmless from and against any
claims or liabilities arising out of the use and/or reproduction of
your Applications; (iv) your Applications must be written using a
licensed, registered copy of the Software; (v) your Applications must
add primary and substantial functionality to the Software; (vi) your
Applications may not pass on functionality which in any way makes it
possible for others to create Applications with the Software; (vii)
your Applications may not compete with the Software; (viii) you may
not use KDAB's or any of its suppliers' names, logos, or trademarks to
market your programs, except to state that your program was written
using the Software.

6. WARRANTY DISCLAIMER
THE SOFTWARE IS LICENSED TO YOU "AS IS". TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, KDAB ON BEHALF OF ITSELF AND ITS SUPPLIERS,
DISCLAIMS ALL WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT WITH
REGARD TO THE SOFTWARE.

7. LIMITATION OF LIABILITY
IF, KDAB'S WARRANTY DISCLAIMER NOTWITHSTANDING, KDAB IS HELD LIABLE TO
YOU BASED ON THE SOFTWARE, KDAB'S ENTIRE LIABILITY TO YOU AND YOUR
EXCLUSIVE REMEDY SHALL BE, AT REPAIR OR REPLACEMENT OF THE SOFTWARE,
PROVIDED YOU RETURN TO KDAB ALL COPIES OF THE SOFTWARE AS ORIGINALLY
DELIVERED TO YOU. KDAB SHALL NOT UNDER ANY CIRCUMSTANCES BE LIABLE TO
YOU BASED ON FAILURE OF THE SOFTWARE IF THE FAILURE RESULTED FROM
ACCIDENT, ABUSE OR MISAPPLICATION, NOR SHALL KDAB UNDER ANY
CIRCUMSTANCES BE LIABLE FOR SPECIAL DAMAGES, PUNITIVE OR EXEMPLARY
DAMAGES, DAMAGES FOR LOSS OF PROFITS OR INTERRUPTION OF BUSINESS OR
FOR LOSS OR CORRUPTION OF DATA.

9. This Agreement may only be modified in writing signed by you and an
authorized officer of KDAB. All terms of any purchase order or other
ordering document shall be superseded by this Agreement.

25

10. This Agreement shall be construed, interpreted and governed by the
laws of Sweden, the venue to be Sunne Tingsrätt.

26

	KD Reports Programmer's Manual
	Chapter 1. Introduction
	What is KD Reports
	Installation
	Feature Summary
	What's New in KDReports?
	New Features in Version 1.3

	The Structure of this Manual

	Chapter 2. Programmers Manual
	Generating a Report: Hello World
	A Letter from KDAB
	Tables with Formatting and a Page-break: PriceList
	Using SQL Data in Reports: A Database Example

	Chapter 3. XML Templates
	Hello World as XML
	The PriceList Example as XML

	Chapter 4. References
	A Brief Look at the API
	The KD Reports XML Template Format
	Introduction
	Element Reference
	Common Attributes in Detail
	<report>
	<text>
	<html>
	<hline />
	<vspace />
	<page-break />
	<image />
	<header>
	<footer>
	<variable>
	<table>
	<cell>
	<chart>

	Advanced Usage

	Examples
	API Documentation

	Chapter 5. Version History
	Version 1.2
	Performance:
	Bugfixes:

	Chapter 6. Appendix
	Obtaining KD Reports
	Support
	How to Contact KDAB
	License

